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Dynamics of ordering of Heisenberg spins with torque: Nonconserved case

Jayajit Das* and Madan Rao†

Institute of Mathematical Sciences, Taramani, Madras 600113, India
~Received 26 September 1997!

We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two
parts — an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the
local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically
~Langevin simulation! and analytically~approximate closure scheme due to Mazenko!, that the torque is
irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an
analysis, carried out on a vector order parameter, shows that the closure scheme performs respectably well. For
quenches toTc , we show, toO(e2), that the torque is irrelevant at the Wilson-Fisher fixed point.
@S1063-651X~98!05105-8#

PACS number~s!: 64.60.My, 64.60.Cn, 68.35.Fx
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I. INTRODUCTION

Interacting systems such as magnets and binary fluids
hibit an ordered configuration at low temperatures, cons
ing of coexisting, symmetry broken phases. When coo
rapidly from the disordered phase at high temperatures, s
systems take a long time to establish order, primarily
cause of the slow annealing of the interfaces~defects! sepa-
rating the competing domains. At late times, the system
ganizes itself into a self-similar spatial distribution
domains characterized by a single diverging length scale
typically grows algebraically in timeL(t);t1/z. This spatial
distribution of domains is reflected in the scale depend
behavior of the correlation functions.

In the last few years, a fairly detailed picture of the la
time behavior of the correlation functions has emerged@1#.
The equal-time order parameter correlation functionC(r ,t)

[^fW (r ,t)•fW (0,t)& is a measure of the spatial distribution
the domains, and at late times is found to behave
f „r /L(t)…, whereL(t) is the distance between defects. T

autocorrelation function,C(0,t150,t2)[^fW (0,0)•fW (0,t2)&,
is a measure of the memory of the initial configurations, a
decays at late times asL(t2)2l. The independent scalin
exponentsz andl and the scaling functionf (x) characterize
the dynamical universality classes at the zero tempera
fixed point @1#.

The scaling results referred to above have been obta
in systems coupled to a constant temperature heat b

where the order parameterfW (r ,t) undergoes a purely diss
pative ~irreversible! dynamics. There is no dynamics of th
order parameter in the absence of this coupling. In gene
however, apart from dissipating into a heat bath, the sys
may have a Hamiltonian dynamics of its own. Such dyna
ics can be represented by a generalized Langevin equa
@2#,
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]fa~r ,t !

]t
5E

r 8,t8
$fa~r ,t !,fb~r 8,t8!%

dF

dfb~r 8,t8!

2G~2 i¹!m
dF

dfa~r ,t !
1ha~r ,t !, ~1!

wherefa is anN-component order parameter,F is a coarse-
grained free-energy functional,$•,•% is the Poisson bracket
andha is the noise. The first term on the right hand side
reversible, while the second is the usual dissipative for
with m52 or 0 according to whether the order paramete
conserved or not. The noise correlator^ha(r ,t)hb(r 8,t8)&
52GkBTdab(2 i¹)md(r 2r 8)d(t2t8) is proportional to the
temperatureT.

As an example let us consider the dynamics of a bin
fluid given by the generalized Langevin description Eq.~1!.
The relative concentrationf of a binary fluid is advected by
the velocity fieldv5g/r. The generalized Langevin equatio
for f involves the reversible$f,ga%dF/dga , which reduces
to the familiar streaming termv•¹f @1#.

One might classify the dynamics according to the alg
braic structure of the Poisson brackets. For instance,
Poisson algebra of the components of the order param
could be of the form$fa ,fb%5c, wherec is in general a
complex number. A recently studied example is the dyna
ics of superfluid ordering of a Bose gas@3#. The dynamics is
written in terms of a complex boson annihilation fieldc,
which obeys the Poisson bracket relation$c,c* %5 i . On the
other hand, the Poisson algebra of the components of
order parameter could be a Lie algebra$fa ,fb%
5cabgfg , wherecabg are the structure constants. A com
mon example is the dynamics of the local magnetic mome
of a Heisenberg magnet. The components of the magn
momentsfa (a51,2,3) satisfy the Poisson algebra,

$fa~r ,t !,fb~r 8,t8!%5VLeabgfg~r ,t !d~r 2r 8!d~ t2t8!,
~2!

whereeabg is the completely antisymmetric tensor in thre
dimensions andVL is the Larmour frequency.

This paper provides a detailed discussion of the ph
ordering dynamics of a nonconserved Heisenberg magne
5069 © 1998 The American Physical Society
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5070 57JAYAJIT DAS AND MADAN RAO
three dimensions. In a future companion paper, we plan
discuss the conserved ordering dynamics. This paper is
ken down as follows. After a brief account of the dynam
of the model~Sec. II!, we discuss the dynamics of pha
ordering following a quench toT50 ~Sec. III!. A Langevin
simulation and an analytical calculation using the appro
mate closure scheme of Mazenko@4,1# lead to the conclusion
that the extra reversible term is irrelevant at late times.
subject the Mazenko closure to systematic numerical t
and show that it is a fairly good approximation at late tim
This section is of general interest, since this is a deta
numerical ‘‘test’’ of the Mazenko theory for a vector ord
parameter. In Sec. IV, we investigate the dynamics follow
a quench to the critical pointTc and show, using a perturba
tive e expansion, that the reversible term is irrelevant at
Wilson-Fisher fixed point.

II. HEISENBERG MAGNET AND PRECESSIONAL
DYNAMICS

The spinsfa (a51,2,3) in a Heisenberg ferromagnet
three dimensions experience a torque from the joint actio
the external field~if present! and the local molecular field. In
response the spins precess with a Larmour frequencyVL
about the total magnetic field. Coupling to various faster
grees of freedom like lattice vibrations or electrons cause
dissipation in the energy and an eventual relaxation towa
equilibrium.

This dynamics follows from the generalized Langev
equation~1!, and the Poisson algebra Eq.~2!,

]fa

]t
52G~2 i¹!m

dF

dfa
1VLeabgS fg

dF

dfb
D1ha . ~3!

The free-energy functionalF is taken to be of the Landa
form,

F@fW #5E d3xFs2 ~¹fW !22
r

2
~fW •fW !1

u

4
~fW •fW !2G . ~4!

The second term in Eq.~3! is clearly the torqueMW 3HW where
HW [dF/dfW is the local molecular field.

The free-energy functional is rotationally invariant in sp
space and so the Poisson bracket term conserves the
spin. If the dissipation arises from spin-spin interactio
then this will conserve the total spin too and som should be
taken to be 2. If, however, the dissipation is a conseque
of spin-lattice or spin-orbit interactions, then the total sp
will not be conserved and som50.

Since the noise correlator is proportional to temperatu
we may drop it in our discussion of zero temperatu
quenches. We then scale spacex, time t, and the order pa-
rameterfW as

x→A r

s
x, t→Grt , fW→Ar

u
fW

to obtain the equation of motion in dimensionless form,

]fW

]t
5¹2fW 1fW 2~fW •fW !fW 1g~fW 3¹2fW !. ~5!
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The dimensionless parameterg5(VL /G)Ar /u is the ratio of
the precession frequency to the relaxation rate. To get a
for the values assumed byg, let us setVL;107 Hz, G
;10621010 Hz, which gives a range ofg;1023210.

III. PHASE ORDERING DYNAMICS: QUENCHES TO T50

Let us now prepare the system initially in the parama
netic phase and quench to zero temperature. We study
time evolution of the spin configurations as they evolve
cording to Eq.~5!. We calculate the equal time correlator,

C~r ,t ![^fW ~r ,t !•fW ~r1x,t !&, ~6!

and the autocorrelator,

C~0,t150,t2![^fW ~r ,t150!•fW ~r ,t2!&, ~7!

where the angular brackets are averages over the ran
initial conditions and space. At late times these correlat
should attain their scaling form

C~r ,t !; f „r /L~ t !…, ~8!

C~0,t150,t2!;L~ t2!2l. ~9!

The length scaleL(t) is a measure of the distance betwe
defects and grows with time asL(t);t1/z. We compute the
scaling functionf (x), the growth exponentz, and the auto-
correlation exponentl by ~i! simulating the Langevin equa
tion ~5! and ~ii ! Mazenko’s closure approximation.

A. Langevin simulation

We discretize Eq.~5! on a simple cubic lattice~with size
N ranging from 403 to 603) adopting a Euler scheme for th
derivatives@5#. The space and time intervals have been c
sen to beDx53 andDt50.01. With this choice of param
eters, we have checked that the resulting coupled map d
not lead to any instability. We have also checked that
results remain unchanged on slight variations ofDx andDt.
Unless otherwise specified, all calculated quantities are a
aged over 30 uncorrelated initial configurations taken from
uniform distribution with zero mean. Throughout our sim
lation we have used periodic boundary conditions.

The scaling of the energy density,

«5
1

VE dr ^@¹f~r ,t !#2& ~10!

can be used to determine the dynamic exponentz. For vector
order parameters,«;L(t)22 at late times, whereL(t) is the
length scale beyond which the field of the defect is scree
by other defects. Figure 1 shows a log-log plot of the ene
density as a function oft for g50, 0.5, 1, 2 on a 603 lattice.
The error bars are smaller than the size of the symbols. U
these times (t516 000), there is no evidence of finite siz
effects. The slight curvature seen in the data~especially for
largerg) is due to finite time corrections. The bold line co
responds toA/(t1t0) whereA and t0 are varied to give the
best fit to the data. This shows that the data gathered ove
decades gives az52, independent of g.
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57 5071DYNAMICS OF ORDERING OF HEISENBERG SPINS . . .
We next calculateC(r ,t) at these late times for differen
values ofg. Figures 2~a!–2~b! are scaling plots ofC(r ,t)
versusr /t1/2 @see Eq.~8!# for g50 andg51 on a 403 lattice
~finite size effects manifest att.12 000). The domain size
L(t) extracted fromC„r 5L(t),t…5C(0,t)/2, scales ast1/z,
where the exponent is againz52 ~within statistical errors!
and independent ofg. Figure 3 shows that the scaling fun
tion f (x) is also independent of g, for g50, 0.5, 1, 2. This
scaling function is compared~bold line in Fig. 3! with
the approximate BPT scaling function forg50 @6#,
f (x)5~3g/2p!@B~2,1/2!] 2F~1/2,1/2,5/2;g2) where g
5exp~2x2/8! and B and F are the beta and the hyperge
metric functions, respectively.

At larger values ofg, finite size effects become ver
prominent. This can be seen from the form of the late-ti
C(r ,t) for g55 ~Fig. 4!, simulated on a 503 lattice averaged
over 7 initial configurations. The correlation function cross
zero at larger , dips through a minimum, and then asym
totically goes to zero@of course*C(r ,t).0#. It is clear from
the figure that at these times,C@r /L(t)# for g55 would be
qualitatively different from the scaling function of Fig. 3
However, notice that the dip decreases with increasing ti
This would suggest that the dip might disappear at late tim
@7#, and that the resulting scaling function would be identi
to Fig. 3. In the next paragraph we will argue that this dip
a preasymptotic feature and disappears in the scaling li
This will allow us to conclude that the scaling functionf (x)
is indeed independent ofg.

At very late times, the order parameter field has tota
relaxed with respect to defect cores. Preasymptotic confi
rations typically consist of spin wave excitations intersper
between slowly moving defects separated by a dista
L(t)@j, the size of the defect core. DecomposingfW into a
singular ~defect! part fW sing and a smooth~spin wave! part
fW sm, we calculate the preasymptotic correlation functi

FIG. 1. Log-log plot of the energy density« vs t for various
values ofg, g50 (s), g50.5 (h), g51 (n), g52 (!). The
straight line is a fit~see text!.
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within a perturbative analysis~see Appendix for details!. The
computed correlation function exhibits a dip atr 2/t;(1
1g2)/g, which disappears algebraically in time~see Appen-
dix!. The amplitude of this dip increases with increasingg.
The dip eventually goes away with a relaxation time th
scales as (t* is the time at which theg50 correlation func-
tion first exhibits scaling!

t~g!5t* ~11g2!. ~11!

The crossover timet(g) is estimated to be~taking t*
51000 for the 403 system! t(g51)52000, t(g52)
55000, andt(g55)526 000. The crossover times forg

FIG. 2. ~a! The scaling functionf (x) vs x[r /t1/2 for g50. Data
are taken att51000 (s), t55000 (n), and t510 000 (!). Error
bars are smaller than the size of symbols.~b! f (x) vs x[r /t1/2 for
g51. Data are taken att52000 (s), t55000 (n), and t
510 000 (!). Error bars as in~a!.
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5072 57JAYAJIT DAS AND MADAN RAO
>5 are much larger than the largest time reached in
simulation. Figure 5 is a plot of preasymptoticC(r ,t)
5Csing1Csm at a fixed time whereCsing is given by the BPT
form @6# and Csing takes the form derived in the appendi
Two adjustable parameters related to the length scale an
amplitude of the spin wave have been tuned to obtain ex
lent fits to the numerical data. Based on these argument
conclude that the scaling functionf (x) is independent ofg.

We now compute the autocorrelation functionC(0,0,t)
and extract the exponentl @see Eq.~9!#. The timet ranges

FIG. 3. f (x) vs x[r /t1/2 for different values ofg @g50 (s),
0.5 (h), 1 (n), 2 (!)#. The data forg52 were obtained from a
simulation on a 503 lattice averaged over 7 configurations. Th
continuous curve is the approximate analytical form defined in
text @6#.

FIG. 4. The correlation functionC(r ,t) vs r for g55 at various
timest53000 (2), t55000 (2•2•), t57000 (•••). Note that the
dip gets smaller as time progresses. Error bars as in Fig. 2~a!.
r

the
l-

we

from 4000 to 16 000 for the 603 lattice ~averaged over 50
initial configurations!, well into the scaling regime for the
one-time correlator. Figure 6 is log-log plots ofC(0,0,t) ver-
sust for g50, 0.5, 1, and 2. It is difficult to give a precis
value of the decay exponentl, since as can be seen from
Fig. 7, the ‘‘effective’’ l varies by about 3% over half a
decade. However, it is evident from the bold line in Fig.
which corresponds toA(t1t0)2l/2 (A and t0 are varied to
give the best fit to the overall data!, that the value ofl is
independent ofg. A fit to each data set for a giveng, obtains

e

FIG. 5. PreasymptoticC(r ,t) for g51 and 5 ~bold lines! cal-
culated in Appendix A. Note the excellent fit to data forg51 (s),
g55 (h).

FIG. 6. Log-log plot of the autocorrelation functionC(0,0,t) vs
t for g50 (s), 0.5 (h), 1 (n), 2 (!). The straight line is a fit
A(t1t0)2l/2, wherel has been chosen to be the Mazenko valu
21.587.
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57 5073DYNAMICS OF ORDERING OF HEISENBERG SPINS . . .
the following values for the exponentl—l(g50)51.526
60.007, l(g50.5)51.52160.008, l(g51)51.5560.01,
and l(g52)51.5560.02. The numerical values liste
above can be compared to the Mazenko closure estima
1.587 for g50 @1#. These values obey the Huse-Fish
boundl.d/2.

It is clear that finite size effects set in at later times.
discussed in@8#, finite size effects will be relevant when th
spread inC(0,0,t) @given byDC(0,0,t);N23/2# is of order
C(0,0,t) itself. This will happen whenL2l;N23/2. The fact
that the numerically computedl increases marginally withg
indicates that finite size effects are more apparent for la
g. This is consistent with our discussion on the effects
finite size on single-time correlators.

We end this section with the following assertion based
our careful numerics. The exponentsz andl and the scaling
function f (x) are seen to be independent of the torqueg.
This implies that the torque is irrelevant to the late-time d
namics atT50. In the next section, we will apply the ap
proximate method of Mazenko to this problem and arrive
the same conclusion.

B. Application of the Mazenko closure scheme

Of the variety of approximate schemes devised to eva
ate the form of the scaling function, the closure scheme
troduced by Mazenko@4# is amenable to systematic improv
ment @1,9#. We shall use this closure scheme to determ
the scaling formf (x) and show that it is independent ofg.
The method consists of trading the order parameterfW (r ,t)
which is singular at defect sites, for an everywhere smo
field mW (r ,t), defined by a nonlinear transformation

fW ~r ,t !5sW „mW ~r ,t !…. ~12!

At late times, the magnitude offW saturates to its equilibrium
value almost everywhere except near the defect cores.

FIG. 7. Effectivel as a function of 1/t for g50.
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suggests that the appropriate choice for the nonlinear fu
tion sW is an equilibrium defect profile,

1

2
¹m

2 sW „mW ~r ,t !…5V8~sW „mW ~r ,t !…!, ~13!

whereV8(x)[2xW1(xW•xW )xW . This choice allows for a natura
interpretation ofmW ~in the vicinity of a defect! as the position
vector from a defect core. The simplest nontrivial solution
Eq. ~13! is the hedgehog configuration,

sW „mW ~r ,t !…5
mW ~r ,t !

umW ~r ,t !u
g~ umW u!, ~14!

whereg(0)50 andg(`)51. Equation~5! can be used to
derive an equation for the correlation functionC~12![^f~r1 ,
t1)•f~r2 ,t2!&. Substituting forf @Eqs. ~12! and ~14!# in the
right hand side of the resulting equation, we get

] tC~12!5¹1
2C~12!1^sW „mW ~2!…•V8~sW „mW ~1!…!&

1g^sW „mW ~2!…•sW „mW ~1!…3¹2sW „mW ~2!…&.

~15!

So far no approximation has been made, but furt
progress seems impossible without one. Now along with M
zenko, we make the assumption that each componen
mW (r ,t) is an independent Gaussian field with zero mean a
times. This implies that the joint probability distributio
P(12)[P„mW (1),mW (2)… is a product of separate distribution
for each component and is given by@1#

)
a
N expH 2

1

2~12g2!
S ma

2~1!

S0~1!
1

ma
2~2!

S0~2!

2
2gma~1!ma~2!

AS0~1!S0~2!
D J , ~16!

where

N5
1

2pA~12g2!S0~1!S0~2!

and

g[g~12!5
C0~12!

AS0~1!S0~2!
.

The joint distribution has been written in terms of the seco
momentsS0(1)5^ma(1)2&, S0(1)5^ma(1)2&, andC0(12)
5^ma(1)ma(2)&.

With this assumption, the right hand side of Eq.~15! sim-
plifies to

]C~12!

]t1
5¹2C~12!1

g

2S0~1!

]C~12!

]g

1g^sW „mW ~2!…•sW „mW ~1!…3¹2sW „mW ~2!…&. ~17!
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5074 57JAYAJIT DAS AND MADAN RAO
It is clear that sinceP„mW (1),mW (2)…5P„2mW (1),2mW (2)…,
the last term, which is odd inmW , drops out. The resulting
equation is identical to the purely dissipative one, show
that the torque is irrelevant at late times. This conclusi
consistent with our earlier numerics, is a direct conseque
of the Mazenko closure approximation.

C. Justification of the Mazenko approximation
for vector order parameters

In this section we will subject the above stated assum
tions of the Mazenko closure scheme to systematic num

FIG. 8. Single point distribution ofP(m1) for g50 at different
times: t55000 (s), t510 000 (h), t515 000 (n). The distribu-
tion scales in the variablem1 /L, whereL(t)5AS0(t).

FIG. 9. Same as Fig. 8, but forg51 for timest55000 (s), t
510 000 (h), t515 000 (n).
g
,

ce

-
ri-

cal tests. We will do this by numerically solving the Lang
vin equation ~5! by the method outlined in Sec. III A
Knowing fW (r ,t), one can computemW (r ,t) by inverting Eq.
~14!. This is facilitated by choosing

g~ umW u!5
umW u

A11mW •mW
, ~18!

which is consistent with the boundary conditions forg(x)
mentioned in the previous section. The resulting ansatz
sW ,

sW „mW ~r ,t !…5
mW

A11mW •mW
, ~19!

can be easily inverted. We calculate both the single po
probability distributionP„mW (r ,t)… and the joint probability
distribution P(12) in the scaling regime and compare wi
the Mazenko assumption. In what follows all probability di
tributions have been computed on a 453 lattice and averaged
over 100 initial configurations. We shall display the distrib
tions forg50 andg51. We have collected data in the sca
ing regime fromt52000 tot515 000, after which finite size
effects set in.

Figure 8 and 9 are scaling plots ofP„m1(r ,t)… at g50
andg51, respectively. In accordance with the Mazenko
sumption, the scaling variable has been taken to
m1 /AS0(t), whereS0(t)5^m1(r ,t)2&. A plot of S0(t) ~for
both g50 and 1) versust ~Fig. 10! shows a linear growth
over a decade, consistent withz52. The scaled distribution
P(m1) is also seen to be the same forg50 andg51 ~Fig.
11!, suggesting that it is independent ofg.

Though the distribution grossly resembles a Gaussia
late times, a closer inspection shows systematic deviation

FIG. 10. Linear growth ofS0(t) with t for g50(s) and g
51(d).
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57 5075DYNAMICS OF ORDERING OF HEISENBERG SPINS . . .
small values ofm1 ~Fig. 11!. The distribution seems to b
flatter than a Gaussian whenm1'0. This is clearly visible in
a plot of 2 ln$2ln@P(m1

2/S0)#% versus ln(m1
2/S0), which shows

that the distribution deviates from a Gaussian for smallm1

~Fig. 12!. These findings are consistent with a similar ana
sis done on a scalar order parameter@10#.

We now study the two point distributionP„mW (1),mW (2)….
Equation~16! implies that in the variables

FIG. 11. Scaling plot ofP(m1) is independent ofg. Data taken
for g50 @ t55000 (s), t510 000 (h)] and g51 @ t55000 (n),
t510 000 (!)].

FIG. 12. Plot of2 ln$2ln@P(m1
2/S0)#% vs ln(m1

2/S0) for g50 @ t
55000 (s), t510 000 (h)] and g51 @ t55000 (n), t510 000
(!)]. The line with slope21 drawn for comparison, highlights th
deviation of the data from a Gaussian at smallerm1.
-

mW 6~12!5
1

2S mW ~1!

AS0~1!
6

mW ~2!

AS0~2!
D @S0~1!S0~2!#1/4,

the distributionP(12)5P„mW 1(12)…P„mW 2(12)…, where

P„mW 6~12!…5)
a

AN expH 2
ma6

2

~16g!AS0~1!S0~2!
J .

~20!

We compute P„ma1(12),ma2(12)… at t15t25t in
the scaling regime. A plot ofP(m11 ,m12) ~Fig. 13! for
ur12r2u54A3 looks like a product of two Gaussian distr
butions. To check this we compute the difference

D„ma1~12!,ma2~12!…5P„ma1~12!,ma2~12!…

2P„ma1~12!…P„ma2~12!…,

which should be zero everywhere if the Mazenko appro
mation were to hold.

Figure 14 shows a surface plot of the differen
D„m11(12),m12(12)…, magnified 105 times. It is clear that
D„m11(12),m12(12)… is zero everywhere except in the re
gion close to the origin, where the maximum deviation fro
0 is around 1025. The situation is similar forg51. We now
computeP„m11(12)… and P„m12(12)…, and find that the
scaled distributions are the same forg50 andg51. Figures
15 and 17 are scaling plots ofP(m11) andP(m12), respec-
tively , and indicate that the scaling function is independ
of g. Moreover the distribution looks like a Gaussia
in accordance with the Mazenko theory. Figures 16 a
18 are plots of2 ln$2ln@P„m16

2 (12)/^m16
2 (12)&…#% versus

ln@m16
2 (12)/^m16

2 (12)&#. The deviation from a straight line
when m16'0 indicates that the distributions differ slightl
from a Gaussian. Note that the data for smallm16 in Figs. 16

FIG. 13. Joint probability distributionP@mW 1(12),mW 1(12)# for
g50 at t55000 andur12r2u54A3.
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and 18 do not quite scale and so it is likely that in the co
putation of the joint-probability distribution, we have not y
reached the scaling regime.

In conclusion, we have shown, by computing the sin
and the two-point probability distributions, that the Mazen
closure scheme is a fairly good approximation at late tim
with possible deviations whenma'0. This study justifies
the use of the Mazenko approximation in the evaluation
the correlation functions and hence the results of the pr
ous section. This constitutes the first serious numerical ch
on the assumptions of the Mazenko scheme for vector o
parameters.

FIG. 14. Surface plot ofD@m11(12),m12(12)# ~magnified 105

times! for g50 at t55000 andur12r2u54A3.

FIG. 15. Scaling plot of P(m11 /L1), where L1

5A^m11
2 (r ,t)&, for g50 @ t55000 (s), t510 000 (h)] and g

51 @ t55000 (n), t510 000 (!)].
-

e

s

f
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IV. PHASE ORDERING DYNAMICS:
QUENCHES TO T5Tc

We now quench from the high-temperature paramagn
phase to the critical pointTc , and ask whether the spin pre
cession changes the late time dynamical behavior. More
cisely, we would like to know whether the torque termg is
relevant at the Wilson-Fisher fixed point corresponding
the pureg50 Heisenberg model with nonconserved dyna
ics.

This can be done by power counting@11# to O(e2) at the

FIG. 16. P(m11 /L1) shows deviation from Gaussian for sma
m1 . Data are shown forg50 @ t55000 (s), t510 000 (h)] and
g51 @ t55000 (n), t510 000 (!)].

FIG. 17. Scaling plot of P(m21 /L2), where L2

5A^m21
2 (r ,t)&, for g50 @ t55000 (s), t510 000 (h)] and g

51 @ t55000 (n), t510 000 (!)].
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Wilson-Fisher fixed pointr * 52(5/22)L2e, u* 58p2e/11
(L is the ultraviolet cutoff!. Dimensional analysis provide
the scaling dimension@g#5d/2112z1h/2. At the Wilson-
Fisher fixed pointz521ch, where c56 ln(4/3)21, and
h5(5/242)e2. This implies that aboved52, the torque term
is irrelevant. Ind51, the torque is relevant, as can be se
by an explicit solution of the Langevin equation~5! in one
spatial dimension.

V. CONCLUSIONS

We have investigated the effect of reversible Poss
bracket terms in a generalized Langevin equation on
phase ordering dynamics at late times. The dynamics of s
systems can be classified by the structure of the Pois
brackets. Here we have made a detailed study of the non
served dynamics of an order parameter whose compon
obey a Lie algebra. A common example is the nonconser
dynamics of a Heisenberg magnet. The dynamics consis
two parts — an irreversible dissipation into a heat bath an
reversible precession induced by a torque due to the l
molecular field. For quenches to zero temperature, we h
shown, both numerically~Langevin simulation! and analyti-
cally ~approximate closure scheme due to Mazenko!, that the
torque is irrelevant at late times. The Mazenko closure w
subject to critical numerical tests and was shown to perfo
well at late times~apart from small deviations!. For quenches
to Tc , we show toO(e2) that the torque is irrelevant at th
Wilson-Fisher fixed point.

In a future paper we plan to investigate the effect of
reversible torque on the conserved dynamics of the Heis
berg magnet in three dimensions. We will show that
torque is relevant both for quenches toT50 andT5Tc .

APPENDIX

In this Appendix we study the effect of spin wave excit
tions on the time dependent preasymptotic equal-time co

FIG. 18. P(m21 /L2) shows deviation from Gaussian for sma
m21. Data are shown forg50 @ t55000 (s), t510 000 (h)] and
g51 @ t55000 (n), t510 000 (!)].
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lation function. We would like to show that inclusion of suc
excitations in the correlation functionC(r ,t) leads to a dip at
preasymptotic times whengÞ0, which eventually relaxes
As suggested in Sec. III A, at very late times, the order
rameter field has totally relaxed with respect to defect co
Preasymptotic configurations typically consist of spin wa
excitations interspersed between slowly moving defect co
These defect cores are separated by a typical distanceL(t)
@j, the size of the defect core. In general one can dec
posefW (r ,t)5fW sing(r ,t)1fW sm(r ,t), where the singular par
fW sing parametrizes defect configurations while the smo
part fW sm is a linear combination of spin waves of wav
vector k, fW sm(r ,t)5V21/2(fW k

sm(t)eik•r. The preasymptotic
correlation function will thus have three contributions —
Csing[^fW sing(0,t)•fW sing(r ,t)&, Csm[^fW sm(0,t)•fW sm(r ,t)&
and the scattering of spin waves from slowly moving defe
Cscat[^fW sm(0,t)•fW sing(r ,t)&. At late times of coursefW k

sm(t)

→0, andfW sing can be traded off for the auxilliary fieldmW
within the Mazenko approach. Thus theCsing(r ,t) part of the
correlation function is given by the solution of Eq.~17! or
the BPT form@6#.

The smooth part of the correlation functionCsm(r ,t) can
be estimated from a perturbative calculation, wherein the
fects separated by a distanceL@j are taken to be static
~justified post priori!. We shall see that the dip is a result
this smooth part. Confining our attention to a single dom
of size L, we can split the smoothfW sm into transverse and
longitudinal components about the well-defined broken sy
metry axis taken to be alonga53. Thusfa

sm(r ,t)5feqda3

1ua(r ,t), where the equilibrium magnetizationfeq51.
Consider an initial smooth localized pulse in the inter

of this domain of the form u1~r ,0!5u2~r ,0!5@u~0!/
~2s)3p3/2]e2r 2

/4s2 and u3~r ,0!5@u3~0!/~2v)3p3/2]e2r 2
/

4v2, where the widthss, v!L and u(0), u3(0)!1. The
equation forua can be read out from Eq.~5!,

]ua

]t
5¹2ua2geab3¹2ub22u3da32~ubub!da3

22~uaub!db31geabgub¹2ug2ububua . ~A1!

To solve this equation perturbatively, we multiply th
nonlinear terms in Eq.~A1! by an arbitrary real paramete
e(<1) and expressua(r ,t) as (n50

n5`enua
(n)(r ,t). The initial

conditions forua
(n)(r ,0) follow from ua(r ,0). We areinter-

ested in solutions that decay ast→`. Convergence of the
perturbation series ate51 is guaranteed by the smallness
the initial deviation and because higher-order terms in
expansion decay faster. ToO(e0), the spin waves do no
interact and

]ua
~0!

]t
5¹2ua

~0!2geab3¹2ub
~0!22u3

~0!da3 . ~A2!

The equations foru1
(0) andu2

(0) decouple in the variables
u6

(0)5(u1
(0)6 iu2

(0))/2, giving rise to two precessing gold
stone modes in the transverse direction and an exponent
decaying mode in the longitudinal direction. Thus,
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u6
~0!~r ,t !5

~16 i !u~0!

16@pt~16 ig !#3/2
expS 2

r 2

4~16 ig !t D
and

u3
~0!~r ,t !5

u3~0!

8~pt !3/2
expS 2

r 2

4t
22t D ~A3!

are the asymptotic solutions toO(e0).
To O(e), the dynamical equations in the transverse va

ables are given by

]u6
~1!

]t
5~16 ig !¹2u6

~1!22u3
~0!u6

~0!6 ig~u3
~0!¹2u6

~0!

2u6
~0!¹2u3

~0!!2@4u1
~0!u2

~0!1~u3
~0!!2#u6

~0! . ~A4!

The last two terms are subdominant in 1/t andu(0),u3(0)
respectively, and so the transverse correlator toO(e) is
given by

Csm
' ~r ,t !5

1

2
^u1~x,t !u2~x1r ,t !1u1~x1r ,t !u2~x,t !&

;
A1

t3/2
expS 2

r 2

8t D1
A2e22t

t3
expS 2

r 2

2t~31g2!
D

3H cosS gr2

4t~31g2!
1p/4D J , ~A5!

whereA1;O„u(0)2
… andA2;O„u(0)2u3(0)… are constants

depending ong and initial conditions. The cosine term in th
above expression results in the observed dip of the total
relation function. The magnitude of the dip increases w
increasingg.

The dynamical equation for the longitudinal component
O(e) is likewise given by
i-

r-
h

]u3
~1!

]t
5~¹222!u3

~1!2@4u1
~0!u2

~0!13~u3
~0!!2#

12ig~u1
~0!¹2u2

~0!2u2
~0!¹2u1

~0!!

2@4u1
~0!u2

~0!1~u3
~0!!2#u3

~0! . ~A6!

As before, the terms proportional to (u3
(0))2, the gradient

terms and the cubic term are subdominant, and so the d
of the longitudinal correlation functionCsm

i is given by

Csm
i ~r ,t !5^f3~x,t !f3~x1r ,t !&;

B1e24t

t3/2
expS 2

r 2

8t D
2

B2e22t

t3
expS 2

r 2

2t~31g2!
D

1
B3

t9/2
expS 2

r 2

4t~11g2!
D , ~A7!

where B1;O„u3(0)2,u(0)2
…, B2;O„u(0)2u3(0),u(0)3

…,
andB3;O„u(0)4

… are functions ofg and initial conditions.
Note thatCsm

' evolves with a width that scales ast1/2 and
whose amplitude decreases ast23/2. The longitudinalCsm

i

decays exponentially fast. This decay is consistent with
earlier assertion that the defects separated by a distanceL(t)
hardly move over time scales corresponding to spin w
relaxation.

The cross correlatorCscat coming from the scattering o
spin waves by moving defects, can be calculated by trea
fsm as ‘‘slaved’’ to fsing. As the defects move they excit
spin waves, which decay in a time scale smaller than
time taken by the defects to move any further. The domin
contribution toCscatcomes from the product of Eq.~A3! and
fsing. It is easy to see that this term leads to the same co
dip as in Eq.~A5! but with an amplitude that decays alg
braically in time. This is the source of the slow decay of t
dip.
n to
on
the
t
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