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Dynamics of ordering of Heisenberg spins with torque: Nonconserved case

Jayajit Dag and Madan Rab
Institute of Mathematical Sciences, Taramani, Madras 600113, India
(Received 26 September 1997

We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two
parts — an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the
local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically
(Langevin simulatiop and analytically(approximate closure scheme due to Mazenkbat the torque is
irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an
analysis, carried out on a vector order parameter, shows that the closure scheme performs respectably well. For
quenches td,, we show, toO(€?), that the torque is irrelevant at the Wilson-Fisher fixed point.
[S1063-651%98)05105-9
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Interacting systems such as magnets and binary fluids ex-
hibit an ordered configuration at low temperatures, consist _I(=iv)e o (rh), 1)

ing of coexisting, symmetry broken phases. When cooled S, (r,1)

rapidly from the disordered phase at high temperatures, such . ]

systems take a long time to establish order, primarily be¥hereg, is anN-component order parametét,is a coarse-
cause of the slow annealing of the interfa¢asfects sepa-  9rained free-energy functiond(;, -} is the Poisson bracket,
rating the competing domains. At late times, the system or@"d 7 iS the noise. The first term on the right hand side is
ganizes itself into a self-similar spatial distribution of reversible, while the second is the usual dissipative force,

domains characterized by a single diverging length scale théﬁ’ith p=2 or 0 according to whether the order parameter is

typically grows algebraically in timé (t)~tY2 This spatial C_Ogﬁir\fl?g O(r—ni%tjMtsrzf—nffljc’g(tcfrtrgl?y?ér’;3&5& tz) 1r>1e

distribution of domains is reflected in the scale dependent_ B “ap prop

behavior of the correlation functions, ten;r;e;erl]tuerf;.m le let us consider the dynamics of a binar
In the last few years, a fairly detailed picture of the late P y y

. ) ) . fluid given by the generalized Langevin description EL.
time behaw_or of the correlation funcuon; has emerffd The relative concentratios of a binary fluid is advected by
The equal-time order parameter correlation functi,t)

. N the velocity fieldv=g/p. The generalized Langevin equation
=(¢(r,t)- $(0})) is a measure of the spatial distribution of for ¢ involves the reversiblés,g,} 5F/5g,,, which reduces

the domains, and at late times is found to behave ag the familiar streaming term- V¢ [1].

f(r/L(t)), whereL(t) is the distance between defects. The One might classify the dynamics according to the alge-
autocorrelation functionC(O,tlzO,tz)E(JS(O,O)-&(O,t2)>, braic structure of the Poisson brackets. For instance, the
is a measure of the memory of the initial configurations, and>0isson algebra of the components of the order parameter
decays at late times ds(t,) *. The independent scaling could be of the form{#, ,$4}=c, wherec is in general a
exponentg and\ and the scaling function(x) characterize COMplex number. A recently studied example is the dynam-

the dynamical universality classes at the zero temperaturjgs_ of sqperﬂuid ordering of a Bose g, Th.e_dy_nami.cs is
fixed point[1]. written in terms of a complex boson annihilation fiefg

. . PR
The scaling results referred to above have been obtaine hich obeys the P0|_sson bracket relatigh ™ }=i. On the

: her hand, the Poisson algebra of the components of the

in systems coupled to a constant temperature heat bat .

- ___ oider parameter could be a Lie algebrap,,ds}
where the order parametef(r.t) undergoes a purely dissi- —¢ . 4 wherec,g, are the structure constants. A com-
pative (ireversible dynamics. There is no dynamics of the mon example is the dynamics of the local magnetic moments
order parameter in the absence of this coupling. In generapf 3 Heisenberg magnet. The components of the magnetic
however, apart from dissipating into a heat bath, the systemhoments¢, («=1,2,3) satisfy the Poisson algebra,
may have a Hamiltonian dynamics of its own. Such dynam-
ics can be represented by a generalized Langevin equation{ ®a(r,t),@a(r",t')}=Q€,5,4,(r,t) 8(r—r")s(t—t"),

[2], 2
wheree g, is the completely antisymmetric tensor in three
dimensions and}, is the Larmour frequency.

*Electronic address: jayajit@imsc.ernet.in This paper provides a detailed discussion of the phase
"Electronic address: madan@imsc.ernet.in ordering dynamics of a nonconserved Heisenberg magnet in
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three dimensions. In a future companion paper, we plan tdhe dimensionless parametg (Q, /T') \r/u is the ratio of
discuss the conserved ordering dynamics. This paper is brehe precession frequency to the relaxation rate. To get a feel
ken down as follows. After a brief account of the dynamicsfor the values assumed by, let us setQ, ~10" Hz, I’

of the model(Sec. I), we discuss the dynamics of phase ~10°—10' Hz, which gives a range aj~10 3—10.

ordering following a quench td=0 (Sec. Il). A Langevin

simulation and an analytical calculation using the approxi—m_ PHASE ORDERING DYNAMICS: QUENCHES TO T=0
mate closure scheme of Mazenkh1] lead to the conclusion

that the extra reversible term is irrelevant at late times. We Let us now prepare the system initially in the paramag-
subject the Mazenko closure to systematic numerical testgetic phase and quench to zero temperature. We study the
and show that it is a fairly good approximation at late times.time evolution of the spin configurations as they evolve ac-
This section is of general interest, since this is a detailegording to Eq.(5). We calculate the equal time correlator,
numerical “test” of the Mazenko theory for a vector order . .

parameter. In Sec. IV, we investigate the dynamics following C(r,t)=(e(r,t)- p(r+x,1)), (6)

a quench to the critical poirk, and show, using a perturba-

tive e expansion, that the reversible term is irrelevant at theand the autocorrelator,

Wilson-Fisher fixed point. - -
C(O,t1=0,t2)5<¢(r,t120)~d)(r,tz)), (7)

where the angular brackets are averages over the random

initial conditions and space. At late times these correlators
The spins¢, (¢=1,2,3) in a Heisenberg ferromagnet in should attain their scaling form

three dimensions experience a torque from the joint action of

II. HEISENBERG MAGNET AND PRECESSIONAL
DYNAMICS

the external fieldif presenj and the local molecular field. In C(r,t)~f(r/L(1)), 8
response the spins precess with a Larmour frequedgy
about the total magnetic field. Coupling to various faster de- C(0,t;=04tp)~L(ty) ™ 9

grees of freedom like lattice vibrations or electrons causes a _ )
dissipation in the energy and an eventual relaxation toward§he length scalé.(t) is a measure of the distance between

equilibrium. defects and grows with time dg(t)~t*?. We compute the
This dynamics follows from the generalized Langevinscaling functionf(x), the growth exponert, and the auto-
equation(1), and the Poisson algebra E@), correlation exponent by (i) simulating the Langevin equa-
tion (5) and (ii) Mazenko’s closure approximation.
ﬁqﬁa_ r 'VM(SF Q oF 3
o (=1V) 5¢a+ L€apy ¢75¢ﬁ e (3) A. Langevin simulation

We discretize Eq(5) on a simple cubic latticéwith size
N ranging from 48 to 60°) adopting a Euler scheme for the
derivatives[5]. The space and time intervals have been cho-
o . r - - u . . sen to beAx=3 andAt=0.01. With this choice of param-
E(V@Z— 5@ )+ 7(o ¢>)2}- (4)  eters, we have checked that the resulting coupled map does

not lead to any instability. We have also checked that the

results remain unchanged on slight variationd\afand At.
Unless otherwise specified, all calculated quantities are aver-

H=4F/4¢ is the local ”?O'e‘:“.'af ﬂelq. . L . aged over 30 uncorrelated initial configurations taken from a
The free-energy functional is rotationally invariant in spin  pitorm distribution with zero mean. Throughout our simu-
space and so the Poisson bracket term conserves the 0[&ion we have used periodic boundary conditions

spin. If the dissipation arises from spin-spin interactions, ; ;

then this will conserve the total spin too and gashould be The scaling of the energy density,

taken to be 2. If, however, the dissipation is a consequence 1

of spin-lattice or spin-orbit interactions, then the total spin &= vj dr([Ve(r,t)]%) (10
will not be conserved and so=0.

Since the noise correlator is proportional to temperature,on pe used to determine the dynamic expomeRbr vector
we may drop it in our discus_sion of zero temperature, yer parameters;~ L (t) 2 at late times, wheré(t) is the
quenches. We then scale spaceimet, and the order pa- |engh scale beyond which the field of the defect is screened
rameter¢ as by other defects. Figure 1 shows a log-log plot of the energy
- - density as a function dffor g=0, 0.5, 1, 2 on a 6Vlattice.
r i T The error bars are smaller than the size of the symbols. Up to
NG =T, ¢— \[u¢ these times t(=16 000), there is no evidence of finite size
effects. The slight curvature seen in the désapecially for
to obtain the equation of motion in dimensionless form,  |argerg) is due to finite time corrections. The bold line cor-
- responds tA/(t+t,) whereA andt, are varied to give the
P w2 g7 3\i T2 best fit to the data. This shows that the data gathered over 1.5
=Vt ¢=(¢-9)P+a(¢XV ). ® decades gives a=2, independent of g

The free-energy functiondf is taken to be of the Landau
form,

FLé1= [ oo

The second term in E@3) is clearly the torquéi x H where
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FIG. 1. Log-log plot of the energy density vs t for various
values ofg, g=0 (O), g=0.5 (d), g=1 (A), g=2 (). The
straight line is a fit(see text
0.8

We next calculateC(r,t) at these late times for different
values ofg. Figures 2a)—2(b) are scaling plots ofC(r,t)
versusr/t?[see Eq(8)] for g=0 andg=1 on a 46 lattice
(finite size effects manifest at>12 000). The domain size 0.6
L(t) extracted fromC(r=L(t),t)=C(0;t)/2, scales as'”?, _
where the exponent is agair=2 (within statistical errors N’
and independent af. Figure 3 shows that the scaling func-
tion f(x) is alsoindependent of gfor g=0, 0.5, 1, 2. This
scaling function is comparedbold line in Fig. 3 with
the approximate BPT scaling function fog=0 [6],
f(x)=(3y2m[B(2,1/2]%F (1/2,1/2,5/2y?) where vy 0.2
=exp(—x?/8) and B and F are the beta and the hypergeo-
metric functions, respectively.

At larger values ofg, finite size effects become very
prominent. This can be seen from the form of the late-time
C(r,t) for g=5 (Fig. 4), simulated on a S0lattice averaged () x = r/L(t)
over 7 initial configurations. The correlation function crosses
zero at larger, dips through a minimum, and then asymp-  FIG. 2. (a) The scaling functiorf (x) vsx=r/t¥2for g=0. Data
totically goes to zerof coursef C(r,t)>0]. Itis clear from &€ taken at=1000 (©), t=5000 (), andt=10000 ). Error
the figure that at these timeS[r/L(t)] for g=5 would be bars are smaller than the size of symbd@b. f(x) vs x=r/t*< for
qualitatively different from the scaling function of Fig. 3. 97 1: Data are taken at=2000 (©), t=5000 (A), andt
However, notice that the dip decreases with increasing time. 10000 (). Error bars as ina).
This would suggest that the dip might disappear at late times .., . . . .
[7], and that the resulting scaling function would be identicalWlthln a perturbative analysisee Appendix for detalsThe

; : T ted correlation function exhibits a dip et/t~ (1
to Fig. 3. In the next paragraph we will argue that this dip |s°°”;p“ ) . ) L
a preasymptotic feature and disappears in the scaling limit! 9 )/g, which disappears algebraically in tingee Appen-

This will allow us to conclude that the scaling functibx) ?_ir)]()' (‘jl'_he amptlituﬁe of this dip inc_rtekz]ases \I/vithtincret_asgw%h t
is indeed independent af. e dip eventually goes away with a relaxation time tha

At very late times, the order parameter field has totallysfc""k?.S ‘::‘St(*h!f).:he tm|1.e at which thg=0 correlation func-
relaxed with respect to defect cores. Preasymptotic configLf—Ion irst exhibits scaling
rations typically consist of spin wave excitations interspersed

— 2
between slowly moving defects separated by a distance Q)= (1+9%).
L(t)>¢, the size of the defect core. Decomposiignto & The crossover timer(g) is estimated to be(taking t,

singular (defec) part bsing @nd @ smooth(spin wavé part  =1000 for the 48 system 7(g=1)=2000, r(g=2)
d<m, We calculate the preasymptotic correlation function=5000, andr(g=5)=26 000. The crossover times far

04—

(=)

(11
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FIG. 3. f(x) vs x=r/t"? for different values ofg [g=0 (O), FIG. 5. Preasymptoti€(r,t) for g=1 and 5(bold lineg cal-

0.5 @), 1 (A), 2 (*)]. The data forg=2 were obtained from a culated in Appendix A. Note the excellent fit to data =1 (O),
simulation on a 59 lattice averaged over 7 configurations. The g=5 (0O0).

continuous curve is the approximate analytical form defined in the

text [6]. from 4000 to 16 000 for the B0lattice (averaged over 50

initial configuration$, well into the scaling regime for the
ne-time correlator. Figure 6 is log-log plots©(0,0t) ver-

sust for g=0, 0.5, 1, and 2. It is difficult to give a precise

value of the decay exponeit, since as can be seen from

=5 are much larger than the largest time reached in ou
simulation. Figure 5 is a plot of preasymptotic(r,t)
=Csingt Csm at a fixed time wher€g;,q is given by the BPT
form [6] and Cypq takes the form derived in the appendix. Fig. 7, the “effective” \ varies by about 3% over half a
Two adjustable parameters related to the length scale and t c.ad'e However, it is evident from the bold line in Fig. 6
amplitude of the spin' wave have been tuned to obtain excell i h éorrespond’s t@\(t+t,) M2 (A andt, are varied to’ ’
lent fits to the numerlcgl data. I__%ased. on these arguments V\(:;elve the best fit to the overall dafahat the value of is
conclude that the scaling functidix) is independent of. independent of). A fit to each data set for a givey) obtains
We now compute the autocorrelation functi@{0,0t) '

and extract the exponeit [see Eq.9)]. The timet ranges — ——
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FIG. 6. Log-log plot of the autocorrelation functi@y0,0t) vs
FIG. 4. The correlation functiof®(r,t) vsr for g=5 atvarious t for g=0 (O), 0.5 @), 1 (4), 2 (x). The straight line is a fit
timest=3000 (—), t=5000 (—- —-), t=7000 (- - -). Note that the ~ A(t+1t,) ™2, where\ has been chosen to be the Mazenko value
dip gets smaller as time progresses. Error bars as in Fagy. 2 —1.587.
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B e B i suggests that the appropriate choice for the nonlinear func-

| | tion o is an equilibrium defect profile,

: ] V26 () =V (S((r 1) (13)

= m(r,t))= m(r,t))),

el B o 1 5 Vo (m(r,t) =V’ (a(m(r,1)))

' g 0, 1 whereV’ (x)= —x+ (x-x)x. This choice allows for a natural

I o %, | interpretation ofn (in the vicinity of a defedgtas the position
;1.53 B 8 °oo i vector from a defect core. The simplest nontrivial solution of
~ L o o i Eq. (13) is the hedgehog configuration,

L g o . rﬁ(r,t) -

i o o | a(m(r,t))=— g(|my|), (14)
—154 |- é o [m(r,t)]

I ° | whereg(0)=0 andg(«)=1. Equation(5) can be used to

L ] derive an equation for the correlation functiéfl2)=((r 4,

L . t;)-&(r,,t,)). Substituting for¢ [Eqgs.(12) and (14)] in the
—rpp e Lo b L o b right hand side of the resulting equation, we get

0 5x10-9 0.0001 0.00015 0.0002 0.00025

v #C(12)=ViC(12) +(a(M(2))-V'(a(m(1))))

FIG. 7. Effective\ as a function of 1/for g=0. .. .. ..
+9(a(m(2))- a(M(1))X V2o (m(2))).

the following values for the exponent—\(g=0)=1.526 (15)
+0.007, A(g=0.5)=1.521+0.008, \(g=1)=1.55+0.01,
and \(g=2)=1.55+0.02. The numerical values listed So far no approximation has been made, but further
above can be compared to the Mazenko closure estimate pfogress seems impossible without one. Now along with Ma-
1.587 for g=0 [1]. These values obey the Huse-Fisherzenko, we make the assumption that each component of
bound\>d/2. m(r.t) is an independent Gaussian field with zero mean at all

It is clear that finite size effects set in at later times. Astimes. This implies that the joint probability distribution
discussed i8], finite size effects will be relevant when the P(12)= P(rﬁ(l),rﬁ(Z)) is a product of separate distributions

spread inC(0,0t) [given by AC(0,01)~N~*?] is of order ¢, aach component and is given [l
C(0,01) itself. This will happen whei. ~*~N~%2 The fact

that the numerically computedincreases marginally with 1 / m2(1) m2(2)
indicates that finite size effects are more apparent for larger H Nexp{ — £ 4=
g. This is consistent with our discussion on the effects of @ 2(1—72)\ So(1) So(2)
finite size on single-time correlators.

We end this section with the following assertion based on _ 2ymg(1)m,(2) (16)
our careful numerics. The exponeatand\ and the scaling VSo(1)Se(2) /|

function f(x) are seen to be independent of the torgue

This implies that the torque is irrelevant to the late-time dy-where

namics atT=0. In the next section, we will apply the ap-

proximate method of Mazenko to this problem and arrive at 1

; N=
the same conclusion. 27V(1— %) Sp(1)Sp(2)

B. Application of the Mazenko closure scheme and

Of the variety of approximate schemes devised to evalu- Co(12)
ate the form of the scaling function, the closure scheme in- y=y(12) = 0 _
troduced by Mazenkp4] is amenable to systematic improve- VS(1)Sy(2)
ment[1,9]. We shall use this closure scheme to determine
the scaling formf(x) and show that it is independent gf ~ The joint distribution has been written in terms of the second
The method consists of trading the order paraméir,t) ~ MomentsSy(1)=(m,(1)?), Sp(1)=(m,(1)?), andCy(12)

which is singular at defect sites, for an everywhere smoot= (Ma(1)Mu(2)). _ _ _
field rﬁ(r,t), defined by a nonlinear transformation With this assumption, the right hand side of Etf) sim-

plifies to
S(r,H)y=a(m(r,1)). (12)
aC(12)=V20(12)+ vy dC(12)
oty 2S,(1)  dy

At late times, the magnitude @ saturates to its equilibrium L R o
value almost everywhere except near the defect cores. This +9{a(Mm(2))- c(M(1)) X V2a(m(2))). (17)
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FIG. 8. Single point distribution oP(m;) for g=0 at different
times:t=5000 (O), t=10 000 (J), t=15000 (A). The distribu-

0

m, /L(t)

2

~

—1(@).

tion scales in the variablm, /L, whereL (t) = ySy(t).

It is clear that sinceP(m(1),m(2))=P(—m(1),—m(2)),
the last term, which is odd im, drops out. The resulting

5000 104 1.5x104

t

FIG. 10. Linear growth ofSy(t) with t for g=0(O) and g

cal tests. We will do this by numerically solving the Lange-

vin equation (5) by the method outlined in Sec. Il A.
Knowing gZ(r,t), one can computeﬁ(r,t) by inverting Eq.

equation is identical to the purely dissipative one, showing(14). This is facilitated by choosing

that the torque is irrelevant at late times. This conclusion,
consistent with our earlier numerics, is a direct consequence

of the Mazenko closure approximation.

C. Justification of the Mazenko approximation

for vector order parameters

-

- ml
g(Im))=—,

1+m-m

(18

which is consistent with the boundary conditions ffix)
mentioned in the previous section. The resulting ansatz for

In this section we will subject the above stated assump--
. . g,
tions of the Mazenko closure scheme to systematic numeri-

1.2 L — T e

0.8

0.6

P(m,/L(t))

0.4

0.2

|
IS

|
[av]
(]

m, /L(t)

FIG. 9. Same as Fig. 8, but fg=1 for timest=5000 ©), t

=10000 (), t=15000 (A).

N
~

o(m(r,t)=——,
14+m-

(19

3.

can be easily inverted. We calculate both the single point
probability distributionP(m(r,t)) and the joint probability
distribution P(12) in the scaling regime and compare with
the Mazenko assumption. In what follows all probability dis-
tributions have been computed on & 4&ttice and averaged
over 100 initial configurations. We shall display the distribu-
tions forg=0 andg=1. We have collected data in the scal-
ing regime fromt=2000 tot= 15 000, after which finite size
effects set in.

Figure 8 and 9 are scaling plots &f(m,(r,t)) atg=0
andg=1, respectively. In accordance with the Mazenko as-
sumption, the scaling variable has been taken to be
m, /\/Sp(t), where Sy(t)=(my(r,t)2). A plot of Sy(t) (for
bothg=0 and 1) versus (Fig. 10 shows a linear growth
over a decade, consistent with-2. The scaled distribution
P(m,) is also seen to be the same fp=0 andg=1 (Fig.

11), suggesting that it is independent gf

Though the distribution grossly resembles a Gaussian at

late times, a closer inspection shows systematic deviations at
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FIG. 11. Scaling plot oP(m,) is independent of. Data taken
for g=0 [t=5000 (O), t=10000 (J)] andg=1 [t=5000 (A),
t=10 000 ()].

small values ofm; (Fig. 11). The distribution seems to be

flatter than a Gaussian whem,~ 0. This is clearly visible in
a plot of —In{—In[P(m&/S,)]} versus In(&/S,), which shows
that the distribution deviates from a Gaussian for small

(Fig. 12. These findings are consistent with a similar analy-

sis done on a scalar order parametid].

We now study the two point distributioR(m(1),m(2)).
Equation(16) implies that in the variables

|
—
T [t r Tt T [ Tt T T T [ T T T T

|
—
o

1
In{m?/(m? )}

FIG. 12. Plot of —In{—In[P(ME/S)]} vs In(ME/S) for g=0 [t
=5000 (©), t=10000 (d)] andg=1 [t=5000 (A), t=10 000
(*)]. The line with slope—1 drawn for comparison, highlights the
deviation of the data from a Gaussian at smathgr
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109

0.8 |

P (m, , m,)
0.6

04 |

FIG. 13. Joint probability distributiofP[ m, (12),m, (12)] for
g=0 att=5000 andr,—r,|=43.

m(1) . m(2)

VSo(1)  VSu(2)

the distributionP(12)= P(m, (12))P(m_(12)), where

[So(1)So(2)]%4,

- 1
m.(12)= E(

) m2.,
Pm.(12)=]] VNV exp — — '
(m-(12)) 1;[ \/_exp{ (1=y) So(l)So(Z)J(ZO)

We compute P(m,,(12),m,_(12)) at t;=t,=t in
the scaling regime. A plot oP(m;, ,m;_) (Fig. 13 for
Ir1—r,/=43 looks like a product of two Gaussian distri-
butions. To check this we compute the difference

A(ma+(12),ma,(12)): P(ma+(12),ma,(12))
—-P(m,.(12))P(m,-(12)),

which should be zero everywhere if the Mazenko approxi-
mation were to hold.

Figure 14 shows a surface plot of the difference
A(my.(12),m;_(12)), magnified 16 times. It is clear that
A(my;(12),m;_(12)) is zero everywhere except in the re-
gion close to the origin, where the maximum deviation from
0 is around 10°. The situation is similar fog=1. We now
compute P(m;,(12)) and P(m;_(12)), and find that the
scaled distributions are the same fpr 0 andg=1. Figures
15 and 17 are scaling plots &(m, ) andP(m;_), respec-
tively , and indicate that the scaling function is independent
of g. Moreover the distribution looks like a Gaussian,
in accordance with the Mazenko theory. Figures 16 and
18 are plots of—In{—In[P(m?. (12)/m3, (12)))]} versus
In[mé_(12)m?_ (12))]. The deviation from a straight line
whenm;,. ~0 indicates that the distributions differ slightly
from a Gaussian. Note that the data for smajl. in Figs. 16
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FIG. 14. Surface plot oA[m;  (12),m;_(12)] (magnified 16
times for g=0 att=5000 andlrl—r2|:4\/§. FIG. 16. P(m, ;/L.) shows deviation from Gaussian for small
m, . Data are shown fog=0 [t=5000 (©), t=10 000 (0)] and
and 18 do not quite scale and so it is likely that in the com-9=1 [t=5000 (&), t=10 000 ¢)].
putation of the joint-probability distribution, we have not yet
reached the scaling regime.

In conclusion, we have shown, by computing the single
and the two-point probability distributions, that the Mazenko \We now quench from the high-temperature paramagnetic
closure scheme is a fairly good approximation at late timeghase to the critical poinf,, and ask whether the spin pre-
with possible deviations whem,~0. This study justifies cession changes the late time dynamical behavior. More pre-
the use of the Mazenko approximation in the evaluation otisely, we would like to know whether the torque tegms
the correlation functions and hence the results of the previrelevant at the Wilson-Fisher fixed point corresponding to

ous section. This constitutes the first serious numerical chedke pureg=0 Heisenberg model with nonconserved dynam-
on the assumptions of the Mazenko scheme for vector ordggs.

IV. PHASE ORDERING DYNAMICS:
QUENCHES TO T=T,

parameters. This can be done by power countifiyl] to O(€?) at the
— 1 — —
- 0.8 -
3 I -
S - ™06 -
£ A -
=9 T =9 r T
— 0.2 — —

0
4 -4 4
my, /L, (t) m,_/L_(t)
FIG. 15. Scaling plot of P(m,,/L,), where L, FIG. 17. Scaling plot of P(m_,/L_), where L_

=\/(m2+l(r,t)), for g=0 [t=5000 (O), t=10000 (1)] and g
=1 [t=5000 (A), t=10000 ()].

=\/(m2,1(r,t)>, for g=0 [t=5000 (©), t=10000 (J)] and g
=1 [t=5000 (A), t=10000 ()].
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e T L lation function. We would like to show that inclusion of such
excitations in the correlation functidd(r,t) leads to a dip at
preasymptotic times wheg+ 0, which eventually relaxes.
As suggested in Sec. Il A, at very late times, the order pa-
rameter field has totally relaxed with respect to defect cores.
Preasymptotic configurations typically consist of spin wave
excitations interspersed between slowly moving defect cores.
These defect cores are separated by a typical dista(ie
> ¢, the size of the defect core. In general one can decom-
pose ¢(r,t) = pgindT,1) + denfr,t), Where the singular part
JSSmg parametrizes defect configurations while the smooth
part <Z>Sm is a linear combination of spin waves of wave-
vector k, ¢er(r,t)=V =22 M(t)e'* . The preasymptotic
correlation function will thus have three contributions —
Csingz<¢singﬂort.) : d’sing(r ,.t)>, CsmE<¢sm(0at) ’ d’sm(r ,t)>
and the scattering of spin waves from slowly moving defects
Coca=( s O1t) - q?sing(r,t)). At late times of courseb{{(t)
L L3 0, and dgng can be traded off for the auxilliary fielch
In{m?_/(m3 }) within the Mazeqko gpp(oach. Thus t@ging_(r,t) part of the
correlation function is given by the solution of E@.7) or

FIG. 18. P(m_, /L_) shows deviation from Gaussian for small the BPT form[6].
m_,. Data are shown fog=0 [t=5000 (O), t=10 000 (0)] and The smooth part of the correlation functi@y,(r,t) can
g=1[t=5000 (A), t=10 000 ()]. be estimated from a perturbative calculation, wherein the de-

. : ' . f ist k i
Wilson-Fisher fixed point* = — (5/22)A%, u* =8n2e/11 ects separated by a distante>¢ are taken to be static

(A is the ultraviolet cutoff. Dimensional analysis provides (justified post prior). We shall see that the dip is a result of
the scaling dimensiohg]=d/2+1—z+ 712, At the Wilson- this smooth part. Confining our attention to a single domain

Fisher fixed pointz=2+c», wherec=6 In(4/3)-1, and ©f sizeL, we can split the smootkp,, into transverse and
n=(5/242)e2. This implies that abovel=2, the torque term longitudinal components about the well-defined broken sym-
is irrelevant. Ind=1, the torque is relevant, as can be seenmetry axis taken to be along=3. Thus¢3(r,t) = ¢ebas
by an explicit solution of the Langevin equati¢s) in one  +u,(r,t), where the equilibrium magnetizatiap,,=1.
spatial dimension. Consider an initial smooth localized pulse in the interior
of this domain of the form u4(r,0)=u,(r,0)=[u(0)/
V. CONCLUSIONS (20)%7¥e 1402 and us(r,0)=[us(0)/(2w)37¥3 e "/
We have investigated the effect of reversible Possiorfiw?, where the widthsr, o<L andu(0), us(0)<1. The
bracket terms in a generalized Langevin equation on thequation foru, can be read out from Ed5),
phase ordering dynamics at late times. The dynamics of such
systems can be classified by the structure of the Poisson du,

—In{-In[P(m?_/(m2_))]}

brackets. Here we have made a detailed study of the noncon- ~ — == V2U,— g€,p3V 2Ug—2U38,3— (Uglp) O3
served dynamics of an order parameter whose components
obey a Lie algebra. A common example is the nonconserved —2(UaUB)5ﬁ3+9€aﬁyugV2Uy— UglgU, . (Al)

dynamics of a Heisenberg magnet. The dynamics consists of
two parts — an irreversible dissipation into a heat bath and a 14 gglve this equation perturbatively, we multiply the

reversible precession induced by a torque due to the locggnjinear terms in Eq(Al) by an arbitrary real parameter
molecular field. For quenches to zero temperature, we hav n=o _n

< M(r 1), initi

shown, both numericallyLangevin simulationand analyti- f(()n dlit)ioir;df(()arﬁr()':;a(srﬂg)(rf’(zl)loavi i?;r?fj L(J? (();'t\)/\/ggfe:mtel?_l
cally (approximate closure scheme due to Mazenkwmat the . ca A ar 1
torque is irrelevant at late times. The Mazenko closure wa§Sted in .SOM'ODS that d_ecay bs»e. Convergence of the
subject to critical numerical tests and was shown to perfornpertwb.at'on series at= Lis guarantged by the smallnegs of
well at late timegapart from small deviationsFor quenches the |n|t|_al deviation and beca%se hlgher_—order terms in the
to T., we show toO(€?) that the torque is irrelevant at the expansion decay faster. TO(e’), the spin waves do not
Wilson-Fisher fixed point. interact and

In a future paper we plan to investigate the effect of the ©)
reversible torque on the conserved dynamics of the Heisen- (7U_a
berg magnet in three dimensions. We will show that the at
torque is relevant both for quenchesTie-0 andT=T..

=V —ge,pV2uy —2u5,5.  (A2)

The equations fou{®) andu{® decouple in the variables
u@=w@=iu®/2, giving rise to two precessing gold-

In this Appendix we study the effect of spin wave excita- stone modes in the transverse direction and an exponentially
tions on the time dependent preasymptotic equal-time corredecaying mode in the longitudinal direction. Thus,

APPENDIX
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(1=i)u(0) p( r? )
(0) C JEEEL A . A— Y7 TRy
Ut (r,t) 1qwt(1i|g)]3lzex 4(1i|g)t
and
uz(0) r2
0= e wr oW

are the asymptotic solutions @(€?).
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st

gt

(V2=2)uf - [4uPu®+3(u)?]

+2ig(uPvau9—yOv2y?)

—[4uQu'9+ (u§)2Ju . (AB)

As before, the terms proportional tu(f))z, the gradient
terms and the cubic term are subdominant, and so the decay
of the longitudinal correlation functioﬁ?lm is given by

To O(e), the dynamical equations in the transverse vari-

ables are given by

o'y
at

=(1+ig)V2uP —2uQuO +ig(uPL v2u'?

—uQv2u) —[4uQuO+ (u§)Zu? . (A4)

The last two terms are subdominant ih &hdu(0),u3(0)
respectively, and so the transverse correlatorOige) is
given by

1
Con(r,t)= §<u+(x,t)u_(x+r,t)+u+(x+r,t)u_(x,t)>
A, p( r2 . Ae 2t r2
~—expg — = exp —
t32 8t t3 2t(3+9?)

(s
Xico§ ———+wl4| ¢,
4t(3+g?)

whereA;~0O(u(0)?) andA,~O(u(0)?uz(0)) are constants

(A5)

Ble—4t

2
Cln{r,t)=(¢3(x,t)¢3(x+r,t)>~ TEX% [ )

8t
B,e % p( r2
t3 2t(3+g?)

: (A7)

. B p( r2
92°A " a1+ ¢7)
where B;~0(u3(0)?,u(0)?), B,~0(u(0)?u3(0),u(0)),
andB;~0O(u(0)*) are functions ofy and initial conditions.

Note thatC,, evolves with a width that scales &% and
whose amplitude decreases @&s’2 The longitudinalCl,,
decays exponentially fast. This decay is consistent with our
earlier assertion that the defects separated by a distafye
hardly move over time scales corresponding to spin wave
relaxation.

The cross correlato€,.,; coming from the scattering of
spin waves by moving defects, can be calculated by treating
¢sm as “slaved” to ¢g,q. As the defects move they excite
spin waves, which decay in a time scale smaller than the

depending oy and initial conditions. The cosine term in the time taken by the defects to move any further. The dominant
above expression results in the observed dip of the total cocontribution toC.,;comes from the product of EA3) and
relation function. The magnitude of the dip increases witheg,,. It is easy to see that this term leads to the same cosine
increasingg. dip as in Eq.(A5) but with an amplitude that decays alge-
The dynamical equation for the longitudinal component tobraically in time. This is the source of the slow decay of the

O(e) is likewise given by

dip.

[1] A. J. Bray, Adv. Phys43, 357 (1994.

[2] P. Chaikin and T. C. Lubensky, iRrinciples of Condensed
Matter PhysicgClarendon Press, New York, 1994

[3] K. Damle, S. N. Majumdar, and S. Sachdev, Phys. Re&4A
5037(1996.

[4] G. F. Mazenko, Phys. Rev. &, 4487(1990; A. J. Bray and
K. Humayun, J. Phys. &5, 2191(1992.

[5] M. Seigert and M. Rao, Phys. Rev. Let0, 1956 (1993.

[6] A. J. Bray and S. Puri, Phys. Rev. Le®7, 2670(1991); H.
Toyoki, ibid. 45, 1965(1992.

[7] In order to make such a claim, great care should be taken to
avoid finite size effects. The tail of the autocorrelation function
gets affected by the finite size of the lattice, earlier than the
part of C(r,t) used to calculate. The decrease in the dip at
g=>5 can only be perceived when the system size is large.

[8] C. Yeung, M. Rao, and R. C. Desai, Phys. Reb3F1(1996.

[9] S. De Siena and M. Zannetti, Phys. Revb® 2621(1994).

[10] C. Yeung, A. Shinozaki, and Y. Oono, Phys. Rev4& 2693

(1994

[11] H. K. Janssen, iffrom Phase Transitions to Chaosdited by

G. Gyagyi et al. (World Scientific, Singapore, 1992



